Non-invasive Ventilation of the Newborn

From Delivery to Discharge

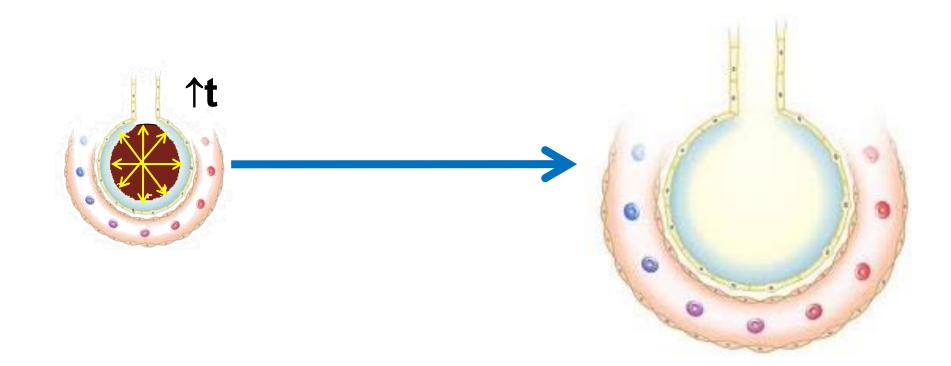
Case Report

- 24 weeks GA, Abruptio Placentae & premature contractions. Apgar 8/8. Weight 610 g (25%)
- Precipitous delivery \rightarrow late arrival of pediatrician
- Ram cannula NCPAP/NIPPV from delivery room
- 89 days of non-invasive ventilatory support
- Short period of nasal HFV
- · Durature treated with fluid restriction

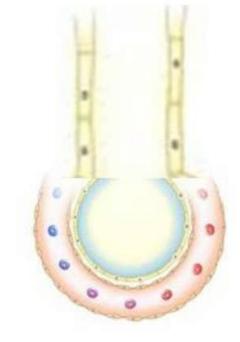
Case Report

- Gastro: PN + feeding tube. 12 days: complete enteral nutrition
- Infectious: workup x 2 sterile
- Neurological: Brain ultrasound normal X 3
- ROP I without plus disease
- Discharge: 94 days, weight 2560gr, room air

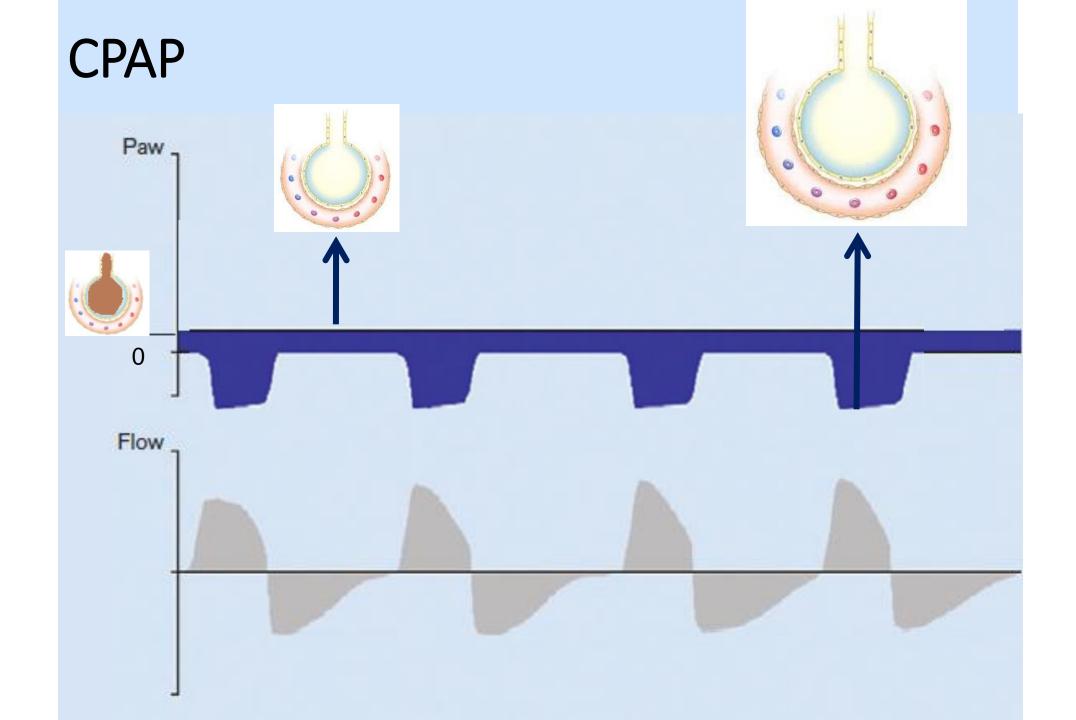
Israel News Israel Elections Arab-Israeli Conflict Diaspora Middle East Opinion Premium Blogs Edition Francaise Christian News Green Israel

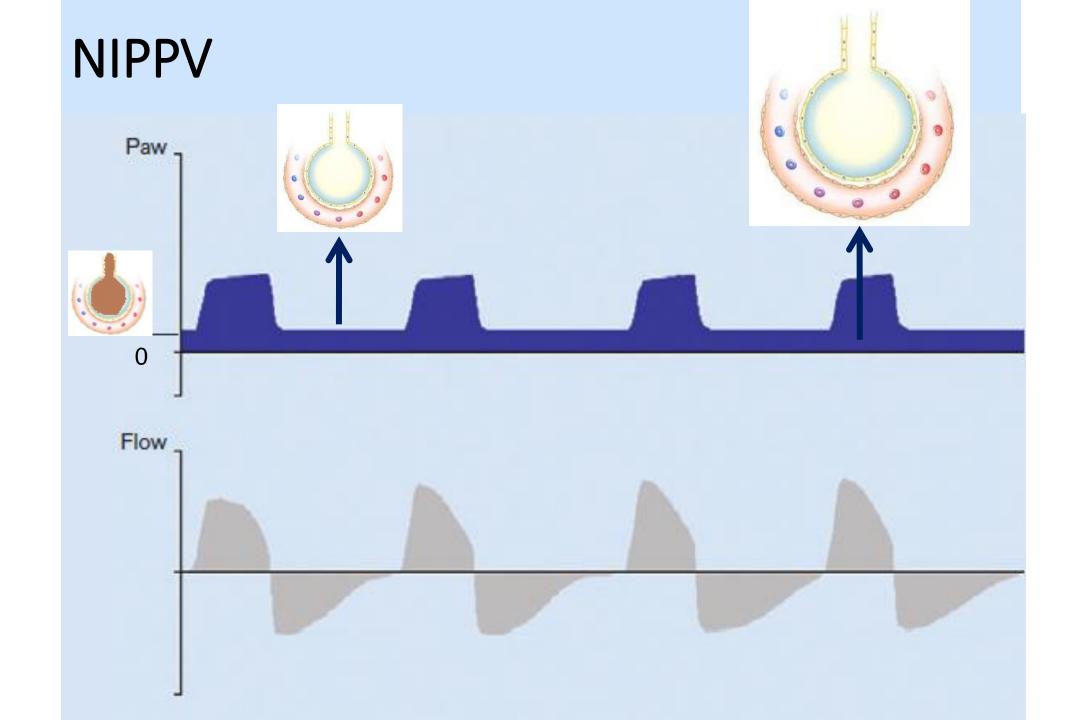

Non Invasive Ventilation

• No intubation. Gas delivered to the lungs through nostrils. "Facilitated Ventilation"


- $\uparrow \underline{P} \Rightarrow \uparrow F x R$ (CPAP)
- $\uparrow \underline{F} \times R \Rightarrow \uparrow P$ (HFNC)

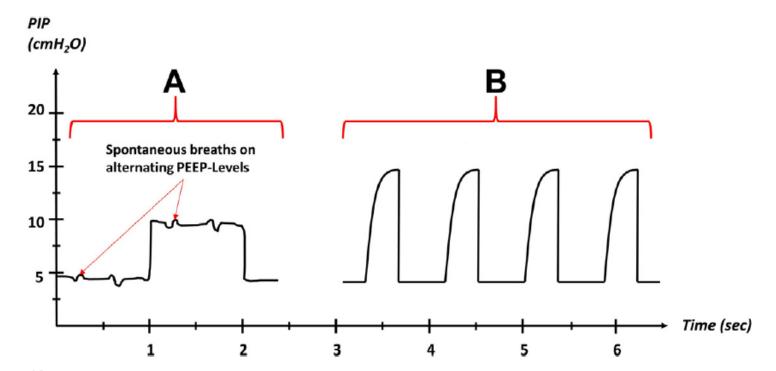
- Closed System (in theory)
- Positive pressure is set \rightarrow Gas flow \propto pressure
- \uparrow FRC \Rightarrow \uparrow oxygenation
- \uparrow alveolar radius at end of expiration \rightarrow


How CPAP Helps?

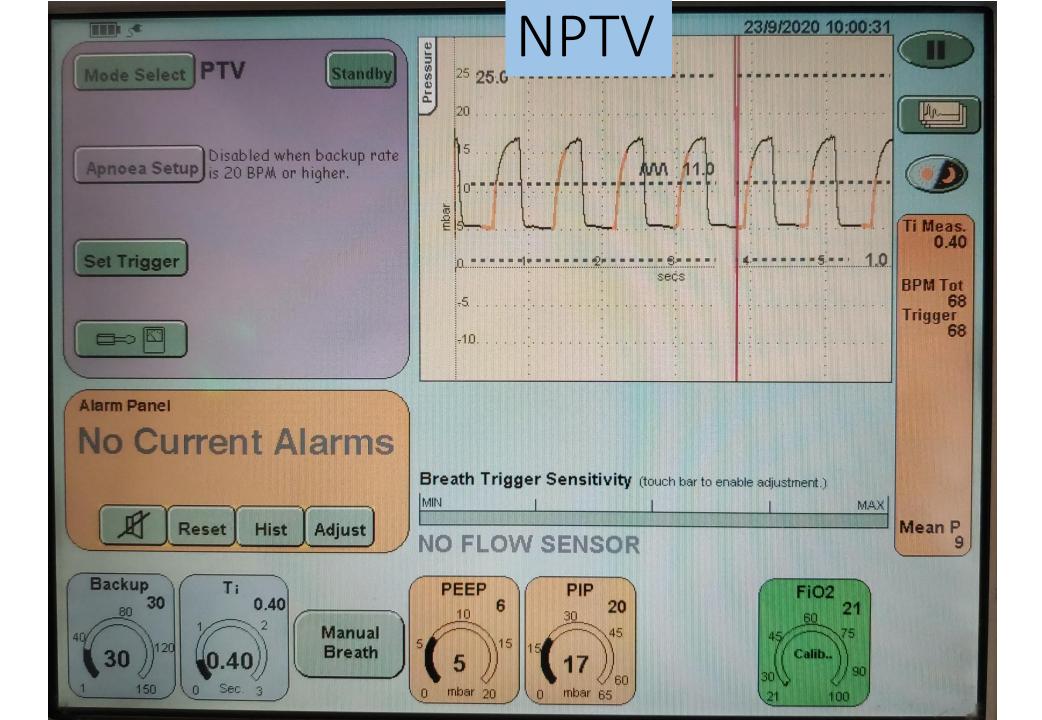

- Closed System (in theory)
- Positive pressure is set \rightarrow Gas flow \propto pressure
- \uparrow FRC \Rightarrow \uparrow oxygenation
- \uparrow alveolar radius at end of expiration \rightarrow
- Facilitates breathing

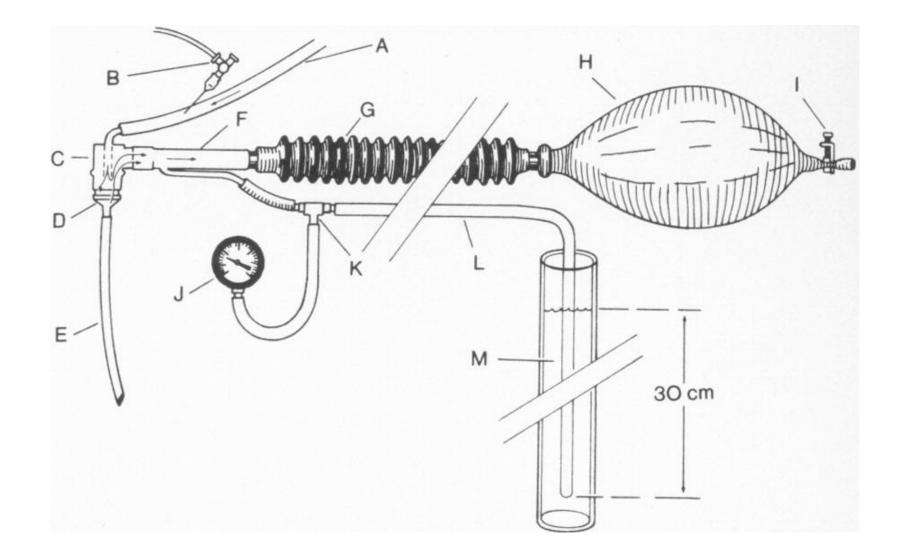
- Closed System (in theory)
- Positive pressure is set \rightarrow Gas flow \propto pressure
- \uparrow FRC \Rightarrow \uparrow oxygenation
- \uparrow alveolar radius at end of expiration \rightarrow
- Facilitates breathing
- Alveolar recruitment
- Same interface may also generate nasal IPPV

- Closed System (in theory)
- Positive pressure is set \rightarrow Gas flow \propto pressure
- \uparrow FRC \Rightarrow \uparrow oxygenation
- \uparrow alveolar radius at end of expiration \rightarrow
- Facilitates breathing
- Alveolar recruitment
- Same interface may also generate nasal IPPV

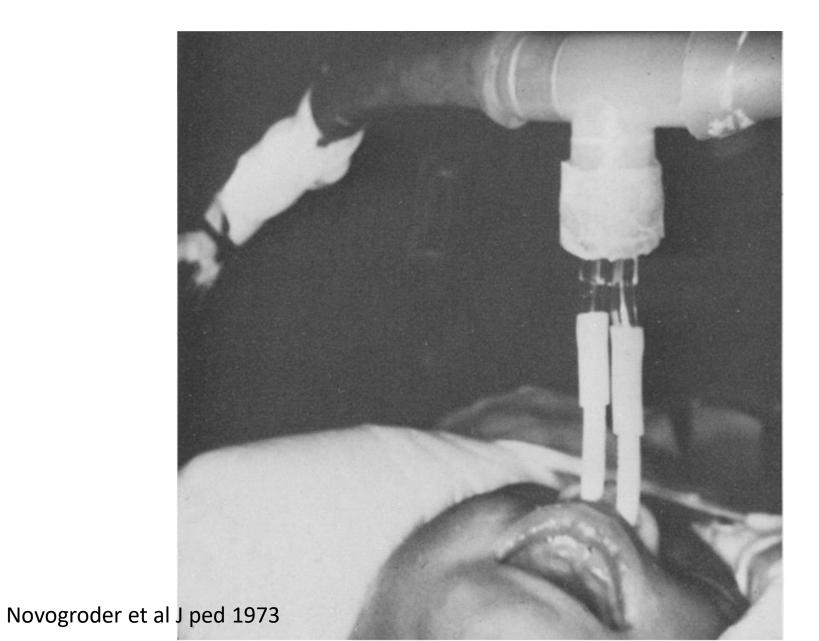

Si-PAP vs. NCPAP: RCT (n=1,009; <1,000 grams BW; GA < 30 weeks)

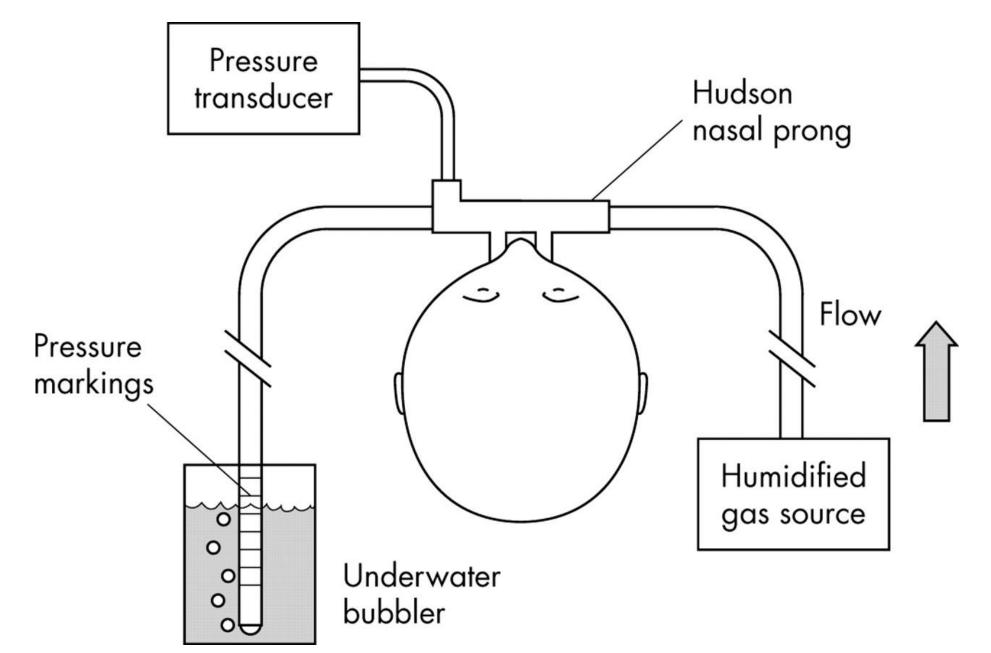
	Si-PAP (n=504)	NCPAP (n=503)	р
BW, g mean (SD)	802 (131)	805 (127)	NS
GA	26.1 (1.5)	26.2 (1.5)	NS
Re-Intubated post- randomization	59.5 %	61.8 %	NS
Prior Intubation	46.5 %	45.4 %	0.70
Caffeine Rx	82.9 %	82.9 %	NS
Survived with BPD	33.9 %	31 %	0.32
Death or BPD @ 36 wks PMA	38.4 %	36.7 %	0.56

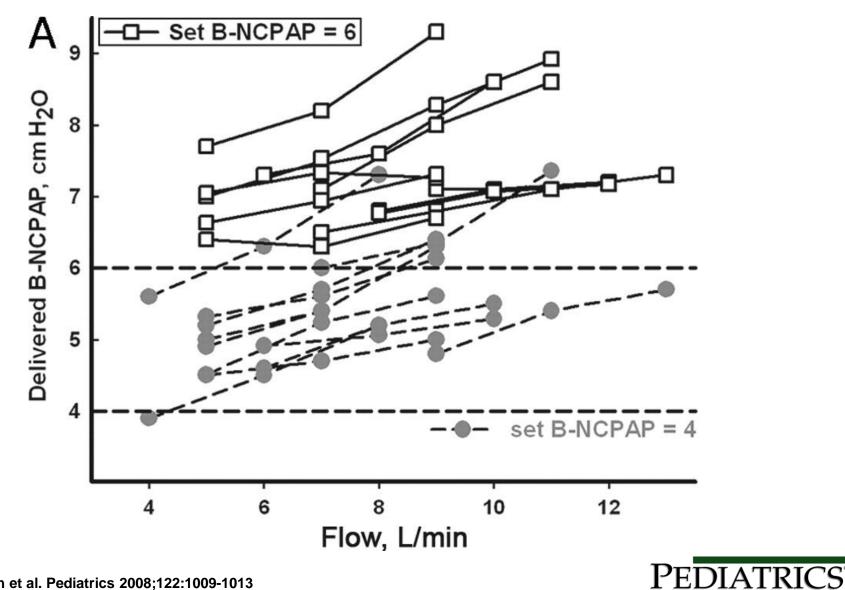

NIPPV= Most Centers used Si-PAP; Suggested Settings: PIP 9-10; Vent: PIP 2-4 above PEEP; Max PIP 18; Rate 10-40; IT 0.3-1 s; No data on Surfactant Rx


Kirpalani H et al. NEJM 369:611-20; August, 2013

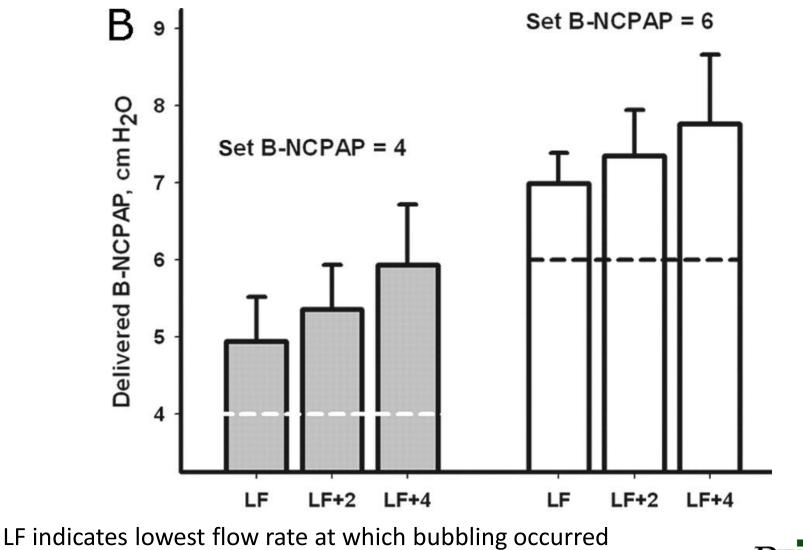
Bilevel CPAP vs NIPPV




Fig. 1. Differences in pressure wave patterns during (*A*) bilevel nasal intermittent positive pressure ventilation (NIPPV) and (*B*) conventional mechanical ventilator-driven NIPPV. PEEP, positive end-expiratory pressure; PIP, peak inspiratory pressure.



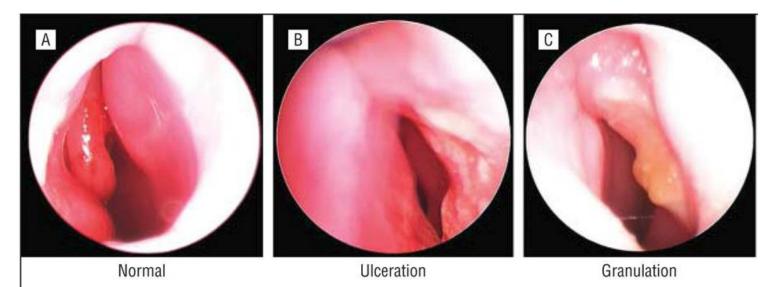
1st NCPAP

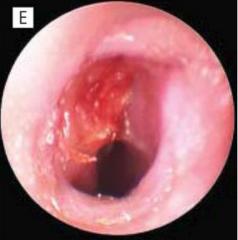


Delivered Pressures at Increasing Flow Rates at 4 and 6 cmH2O B-NCPAP for 19 individual infants

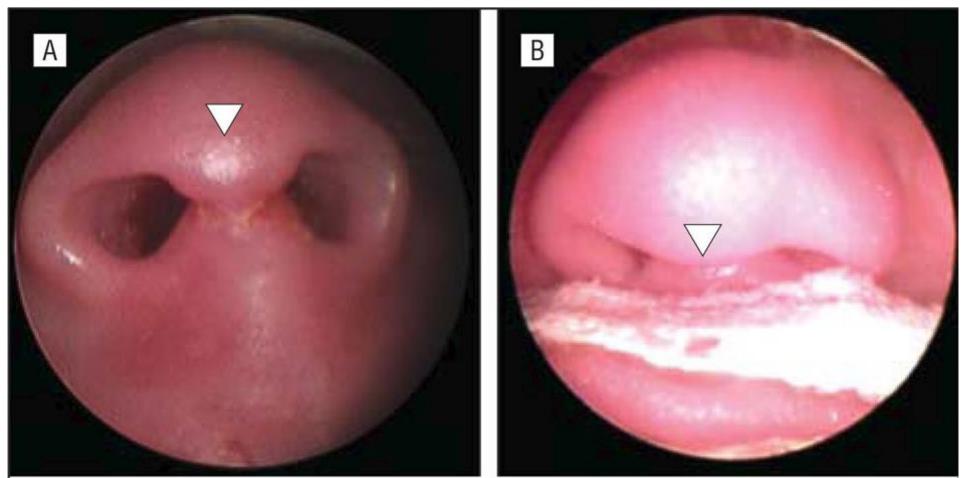
Delivered Pressures at increasing flow rates at 4 and 6 cmH2O B-NCPAP Averages for All infants

Doron J. Kahn et al. Pediatrics 2008;122:1009-1013





CPAP Nasal Lesions


D Moderate (35%)

Severe (>50%)

Vestibular stenosis

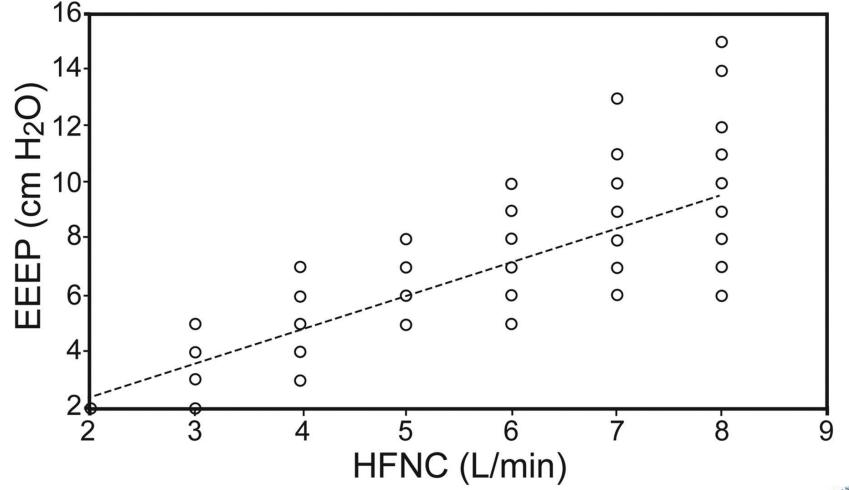
CPAP Septum Lesions

Early necrosis (10 d of nasal CPAP use)

Nearly complete necrosis (12 d of nasal CPAP use)

High Flow Heated Humidified Nasal Cannula (HFNC)

- Flow is set \Rightarrow Pressure depends on airway resistance
- Vapotherm
- Optiflow (F&P)
- "Oxygen therapy" of some ventilators
- Baby friendly interface



Proposed Mechanisms for Therapeutic Effects of HFNC

- Increased FiO₂ flow
 - [↑] Gas flow prevents entry of room-air
 - Exceeds inspiratory flow \rightarrow eliminates nasal resistance
 - Washout dead space optimizing minute ventilation
- CPAP Effect
 - Decreases atelectasis and improves V/Q relationship
 - Stimulates respiratory center $\rightarrow \downarrow$ apnea of prematurity
 - Decreases work of breathing

Association between high-flow nasal cannula (HFNC) and generated end-expiratory esophageal pressures (EEEP) in premature infants.

Proposed Mechanisms for Therapeutic Effects of HFNC

- Greater Comfort
 - Warmed and humidified gas better tolerated, especially with flows 6 L/min
- Humidification of gas restores mucocilliary function
 - Improve secretion mobilization
 - \downarrow symptoms of airway hyper-reactivity
- Interface
 - More comfortable
 - Avoids septal injury

HFNC Compared with Nasal CPAP in Preterm Infants Cochrane 02/2016

- Similar rates of efficacy for preventing
 - Treatment failure
 - Death
 - CLD
- Less nasal trauma
- \downarrow pneumothorax?
- \downarrow length of stay

Nasal Trauma

	HEN	С	CPA	Р		Risk Ratio		Risk R	atio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed	, 95% CI	
Campbell 2006	0	20	0	20		Not estimable				
Yoder 2013	4	102	15	115	11.5%	0.30 [0.10, 0.88]				
Mostafa-Gharehbaghi 2014	14	42	27	43	21.7%	0.53 [0.33, 0.86]				
Manley 2013	60	152	82	151	66.9%	0.73 [0.57, 0.93]				
Total (95% CI)		316		329	100.0%	0.64 [0.51, 0.79]		•		
Total events	78		124							
Heterogeneity: Chi ² = 3.56, df	= 2 (P = 0	.17); I ₹	= 44%						t	4.00
Test for overall effect: Z = 4.09 (P < 0.0001)						0.01	0.1 1 Favours HFNC	10 avours CPAP	100	

Pneumothorax

	HEN	С	CPA	Р		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Collins 2013	0	67	1	65	12.9%	0.32 [0.01, 7.80]	
Liu 2014	1	71	2	79	16.0%	0.56 [0.05, 6.00]	
Manley 2013	1	152	4	151	34.0%	0.25 [0.03, 2.20]	
Mostafa-Gharehbaghi 2014	1	42	3	43	25.1%	0.34 [0.04, 3.15]	
Yoder 2013	0	107	1	119	12.0%	0.37 [0.02, 9.00]	
Total (95% CI)		439		457	100.0%	0.35 [0.11, 1.06]	
Total events	3		11				
Heterogeneity: Chi ² = 0.25, df	= 4 (P = 0	.99); l ^z	= 0%				
Test for overall effect: Z = 1.86	6 (P = 0.08	i)					0.01 0.1 1 10 100 Favours HFNC Favours CPAP

Outcome	High-Flow Group (N=278)	CPAP Group (N=286)	Risk Difference (95% CI)*	P Value
	no./total no	0. (%)	percentage points	
Primary intention-to-treat analysis				
Treatment failure within 72 hr	71/278 (25.5)	38/286 (13.3)	12.3 (5.8 to 18.7)	<0.001
Gestational age <32 wk	46/140 (32.9)	27/149 (18.1)	14.7 (4.8 to 24.7)	0.004
Gestational age ≥32 wk	25/138 (18.1)	11/137 (8.0)	10.1 (2.2 to 18.0)	0.01
Intubation within 72 hr	43/278 (15.5)	33/286 (11.5)	3.9 (-1.7 to 9.6)	0.17
Gestational age <32 wk	30/140 (21.4)	24/149 (16.1)	5.3 (-3.7 to 14.3)	0.25
Gestational age ≥32 wk	13/138 (9.4)	9/137 (6.6)	2.9 (-3.5 to 9.3)	0.38
Per-protocol analysis				
Treatment failure within 72 hr	64/264 (24.2)	36/279 (12.9)	11.3 (4.8 to 17.8)	<0.001
Intubation within 72 hr	39/264 (14.8)	33/279 (11.8)	2.9 (-2.8 to 8.7)	0.31

* Positive values favor the CPAP group, and negative values favor the high-flow group. Apparent discrepancies in some of the risk differences are due to rounding.

From: Lavizzari A et al. Heated, Humidified High-Flow Nasal Cannula vs Nasal CPAP for Respiratory Distress Syndrome of Prematurity. A Randomized Clinical Noninferiority Trial JAMA Pediatr. 2016

Outcome	HHHFNC (n = 158)	nCPAP/BiPAP (n = 158)	95% CI of Risk Difference or Difference in Medians	<i>P</i> Value ^a
Mechanical ventilation within 72 h, No. (%)	17 (10.8)	15 (9.5)	-6.0 to 8.6	.71
Gestational age ^b				
29 ⁺⁰ to 32 ⁺⁶	10 (14.1)	8 (10.9)		.70
33 ⁺⁰ to 34 ⁺⁶	2 (3.8)	4 (7.5)		.67
35 ⁺⁰ to 36 ⁺⁶	5 (14.7)	3 (9.4)		.76
Age at start of mechanical ventilation, median (IQR), h	27.0 (8.0-36.0)	7.0 (3.0-19.0)	-24.5 to 0.0	.06
Duration of mechanical ventilation, median (IQR), d	3.2 (1.2 to 5.0)	3.0 (1.2 to 6.0)	-1.25 to 2.25	.72

Table 2. Primary Outcome Results

Primary Outcome Results

Secon	Outcome	HHHFNC (n = 158)	nCPAP/BiPAP (n = 158)	95% Cl of Difference in Medians or Risk Difference	P Value ^a
	Duration received, median (IQR), d				
	Respiratory support	4.0 (2.0 to 6.0)	4.0 (2.0 to 7.0)	-1.0 to 0.5	.45
	Noninvasive respiratory support	3.5 (2.0 to 6.0)	3.5 (2.0 to 7.0)	-1.0 to 0.5	.48
	Oxygen supplementation	0.0 (0.0 to 1.0)	0.0 (0.0 to 0.8)	0.0 to 0.0	.43
	Caffeine treatment	12.0 (6.0 to 22.0)	15.0 (7.0 to 24.0)	-1.0 to 4.0	.25
	Surfactant, No. (%)				
	Administration	70 (44.3)	73 (46.2)	-9.8 to 13.5	.73
	Multiple doses	7 (4.4)	8 (5.1)	-4.6 to 6.0	.85
	Adverse event, No. (%)				
	Air leaks	3 (1.9)	4 (2.5)	-3.3 to 4.5	.70
	BPD	7 (4.4)	8 (5.1)	-3.9 to 7.2	.79
	Confirmed sepsis	10 (6.3)	13 (8.2)	-4.4 to 8.2	.51
	Confirmed NEC	1 (0.6)	2 (1.3)	-2.1 to 3.5	.56
	IVH	6 (3.8)	4 (2.5)	-3.2 to 5.8	.52
	PDA	8 (5.1)	9 (5.7)	-5.0 to 6.2	.80
	ROP	1 (0.6)	0	-1.2 to 2.4	.32
	Death	0	1 (0.6)	-1.2 to 2.4	.32
	Any ^b	28 (17.7)	28 (17.7)	-9.0 to 9.0	>.99
	Full enteral feeding, median (IQR), d	9.0 (6.0 to 15.0)	10.0 (6.0 to 16.0)	-1.0 to 1.0	.53
	Exclusive breastfeeding at discharge, No. (%)	49 (31.0)	43 (27.2)	-6.3 to 12.8	.46
	Hospitalization, median (IQR), d	20.0 (11.0 to 35.0)	23.0 (12.0 to 36.0)	-4.0 to 2.0	.41
	Weight at discharge, median (IQR), g	2250 (2030 to 2485)	2287 (2065 to 2535)	-100.0 to 50.0	.47

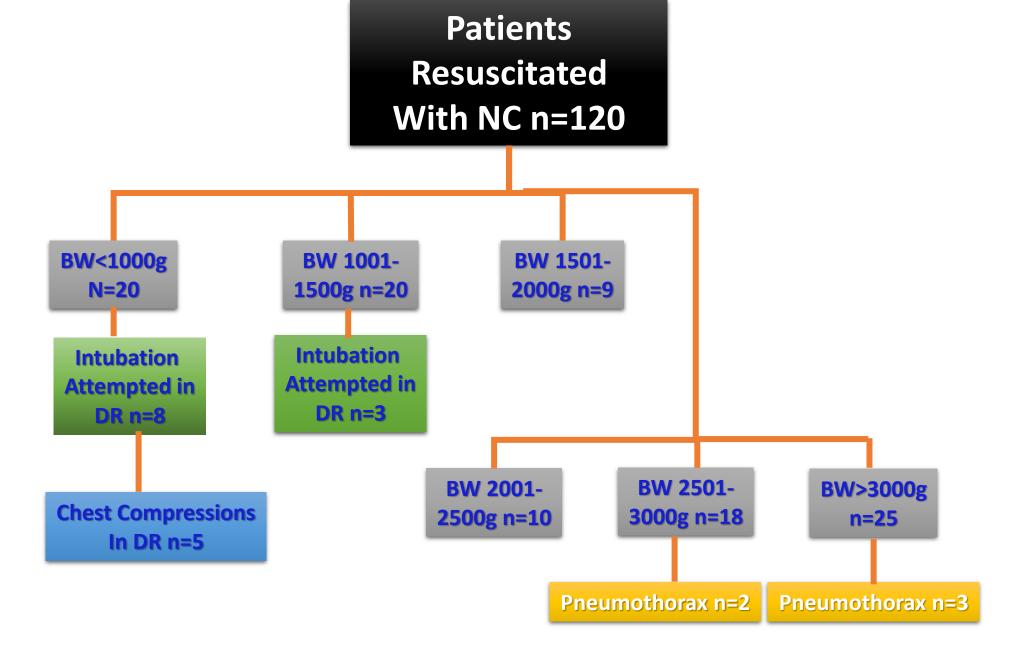
Abbreviations: BiPAP, bilevel nasal continuous positive airway pressure; BPD, bronchopulmonary dysplasia; HHHFNC, heated, humidified high-flow nasal cannula; IQR, interquartile range; IVH, intraventricular hemorrhage; nCPAP, noninferior to CPAP; NEC, necrotizing enterocolitis; PDA, patent ductus arteriosus; ROP, retinopathy of prematurity. ^a Dichotomous outcomes were compared by χ² test; continuous

outcomes were compared by Wilcoxon 2-sample test.

'Includes confirmed sepsis, confirmed NEC, IVH, PDA, ROP, BPD, air leaks, and death.

RAM Cannula

- Interface similar to the one of HFNC
- Delivers NCPAP (ventilator or bubble)
- \cong 30% leak at nostrils \rightarrow Hybrid of NCPAP & HFNC
- Connects to Ventilator or other flow sources
- Delivers HFNC (ventilator or flow through heater)
- Also Low Flow Nasal Cannula



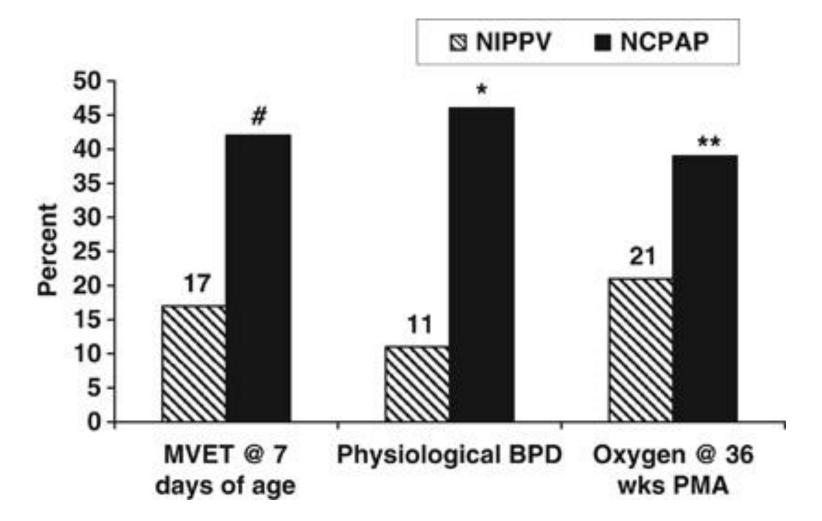
Delivery Room

- Positive Pressure from the very first minute of life
- Connects to T-piece resuscitator or ventilator
- CPAP
- Possibility of adding CMV (nasal IPPV)
- Keep ventilation while transporting to NICU

Neonatal Resuscitation in DR Using a Nasal Cannula: A Single-Center Experience

- If respiratory distress, apnea, hypopnea, or a heart rate < 100 → NCPAP of 5 mbar through nasal cannula @ Flow rate of 10 L/min
- If still apnea or bradycardia after 30 seconds of adequate NCPAP→PPV (PIP 20 mbar, 40 to 60 BPM)
- PIP 1 up to 30 mbar if poor response

• Effective DR resuscitation with Ram cannula is feasible



Non Invasive Ventilation in the NICU

- Before, during and after INSURE o MIST
- Allows oxygenation of patient during intubation
- Using the respirator continue with
 - NCPAP
 - NIPPV
- If failure \rightarrow Invasive Ventilation
- Keep cannula in the patient area for further use after extubation

Nasal IPPV vs CPAP after surfactant for RDS in preterm infants <30 weeks' gestation: a RCT

[#]*P*=0.005, ^{*}*P*=0.001, ^{**}*P*=0.04, MVET, mechanical ventilation via endotracheal tube

Ramanathan R et al. J Perinatol 2012

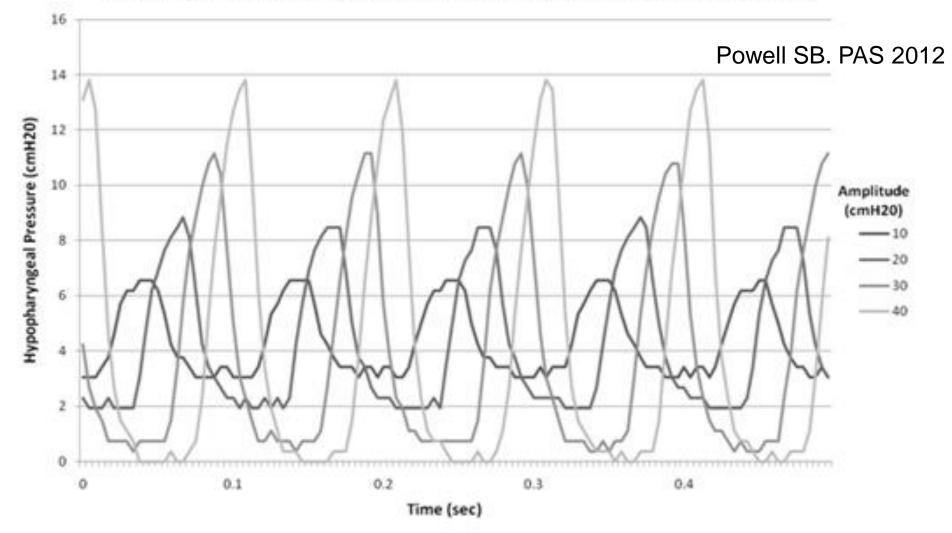
Accessory During Invasive Ventilation

- Accidental Extubation
 - Rapid connection to Ram cannula
 - Reanimation prior to re-intubation
 - Trial for continuing with non invasive ventilation
- Programmed Extubation
 - Non-invasive ventilation with Ram cannula
 - Direct connection to the ventilator's whye piece
 - If failure, re-intubate using same ventilator device

Non-Invasive Ventilation Continuation

- Weaning: gradual reduction of pressure and FiO₂
- Low-Flow Oxygen therapy connection to gas blender)

Kangaroo Care


- Bubble CPAP
- High Frequency Nasal Ventilation
- High flow nasal cannula
- Non-Invasive NO administration

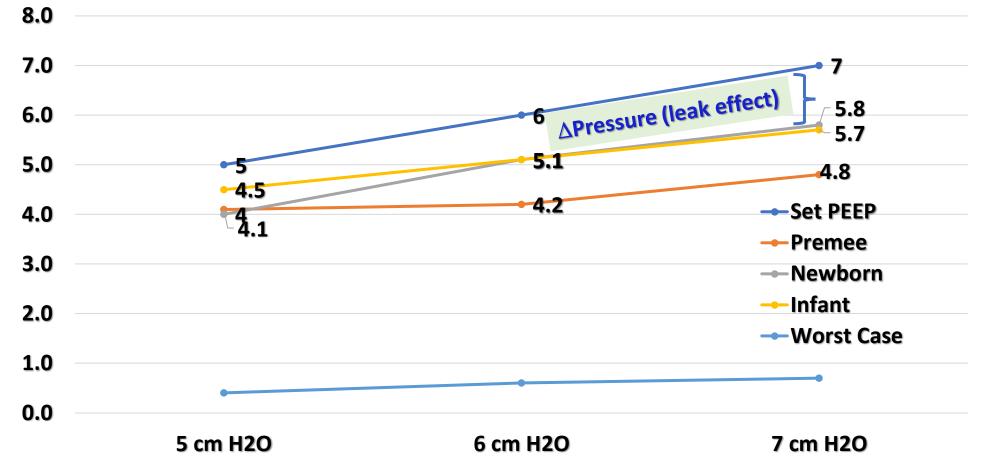
Nasal HFOV with Binasal Cannula Appears Effective and Feasible in ELBW Newborns

- n-HFOV seems effective and feasible
- 3 premature on n-HFOV through RAM Cannula
 - In two cases, n-HFOV to prevent extubation failure
 - In one case, we used it to avoid intubation
- n-HFOV may be useful in:
 - Early times of respiratory failure
 - Extubation particularly after prolonged intubation

Evaluation of High Frequency Ventilation using RAM Nasal Cannula in a Hypopharyngeal Model

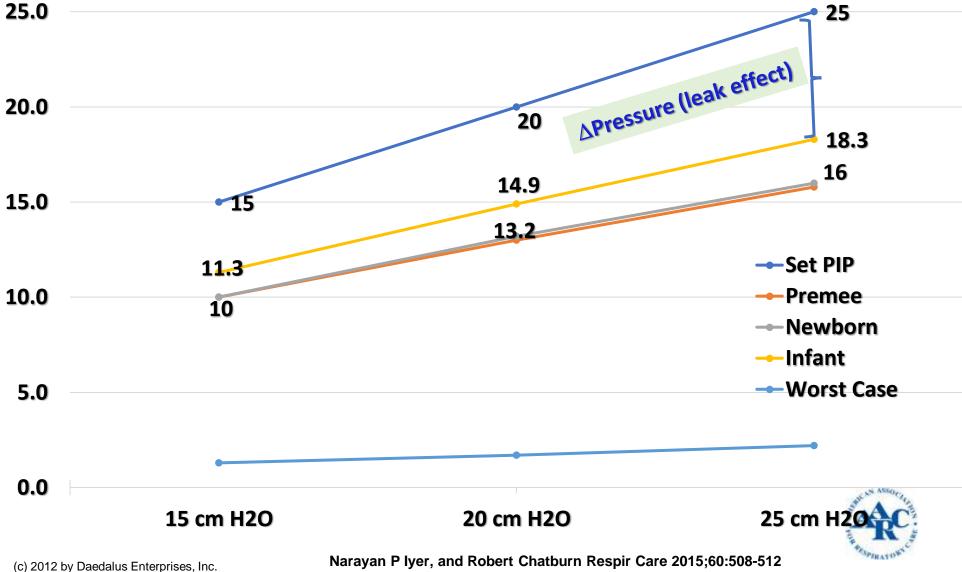
Hypopharyngeal Pressure vs Time on Sensormedics 3100A for Amplitudes 10-40 cmH20 at MAP 10 cmH2O and Freq 10 Hz

Evaluation of a Nasal Cannula in Noninvasive Ventilation Using a Lung Simulator


- Lung simulator (IngMar ASL 5000) passive mode
- Simulate a 1–3 kg neonate, normal-moderately sick lungs
- 3 Different PIPs & PEEP were evaluated
- Three sizes of RAM cannula
- Nose designed to keep 30% leak
- Worst case leak (58% leak) largest nostril + smallest cannula

lyer et al. Respir Care 2015

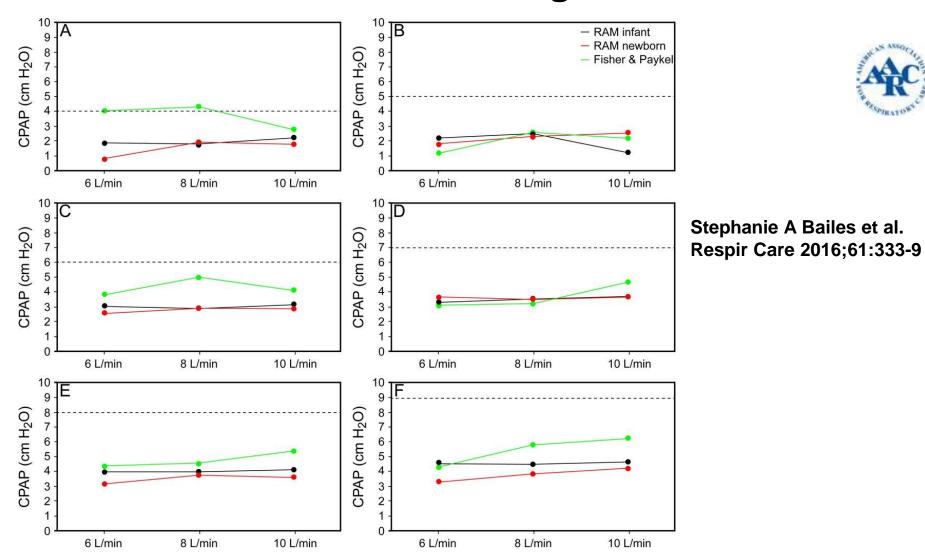
RAM Cannula vs. Nostril


Size	Cannula	Nostril	Leak
Premee	3mm	3.4mm	30%
Newborn	3.5mm	4mm	30%
Infant	4mm	4.6mm	30%
Worst Case	3mm	4.6mm	56%

Measured Peep in a Simulate Nose at Different Set PEEPs

Measured PIP in a Simulate Nose at Different Set PIPs

Measured VT in a Simulate Nose at Different Set PIPs

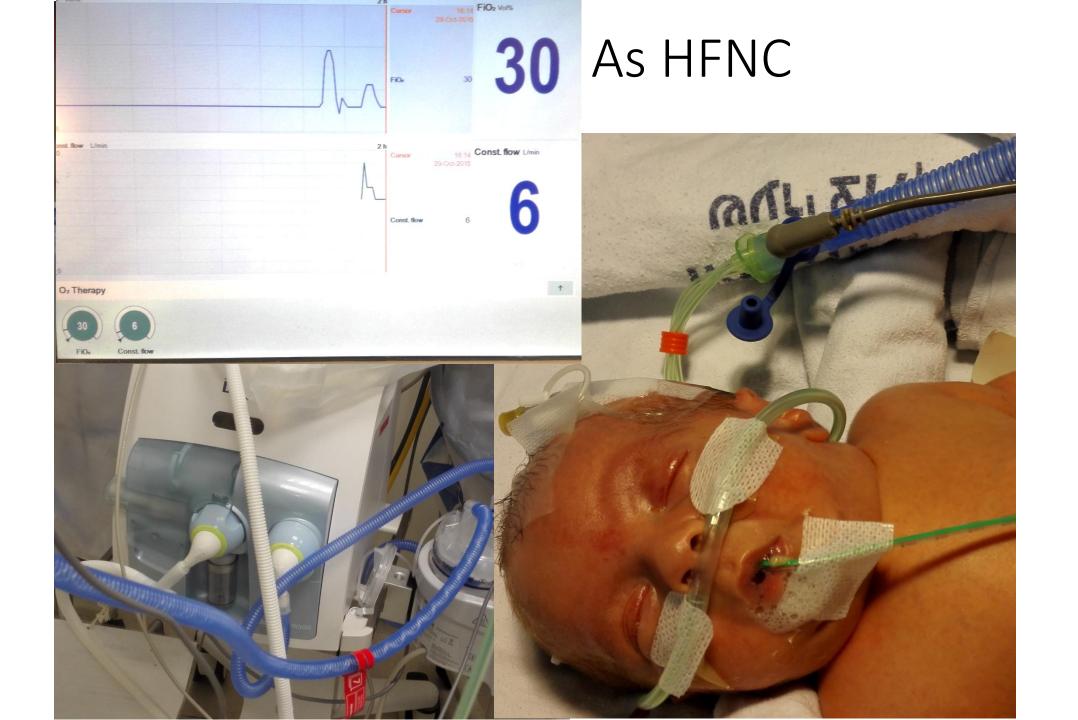


CONCLUSIONS

- With < 30% leak, the RAM cannula results in clinically acceptable transmission of pressures
- With > 50% leak, a clinically negligible amount of pressure is transmitted to the artificial lungs

Measured median CPAP levels for each set CPAP level across the range of flows

Flow can either \uparrow resistance to breathing or fail to meet inspiratory demands Clinicians need to be aware of the effect of flow on CPAP delivery


RAM vs Classic CPAP Cannula for Non-Invasive Ventilation in Premature Babies Prospective and Randomized Study of Non-Inferiority

Outcome Intubation ≤ 72 Hs	N Total	Ram	CPAP Conventional	95% CI of risk difference	Р
Study Group	166	12/83 (14%)	15/83 (18%)	-14.8 to 7.6	.53
Brthweight, g					
<1250	82	7/42 (17%)	9/40 (23%)	-22.9 to 11.3	.51
≥1250	84	5/41 (12%)	6/43 (14%)	-16.2 to 12.6	.81
NIV Initial	104	10/53 (19%)	10/51 (20%)	-15.9 to 14.4	.92
Postextubation	62	2/30 (7%)	5/32 (16%)	-24.3 to 6.5	.43
Moderate & severe nasal trauma		4 (5%)	14 (17%)	0.02 to 0.22	<u>.01</u>

2 cases of severe nasal injury, both in the group of the classic CPAP interface

Hochwald O et al. JAMA Ped 2020

Non-Invasive Nitric Oxide

Conventional NCPAP vs. Ram Cannula

	Conventional NCPAP	Ram cannula
Conection to ventilator	Desconnect 2 tubes	Direct Conection
Use in delivery room	Difficult	Easy
Use for transport	Difficult	Easy
Cleaning	Cloth cap	No accessories
Accidental Extubation	Slow Conection	Rapid conection
Patient's Motility	Restricted	Free
Injury to the Nasal septum	Frequent	Rare
Use of additional device	Some models	Ventilator
Control	Pressure	Pressure or Flow